Encoding molecular structures as ranks of models: A new, secure way for sharing chemical data and development of ADME/T models

Igor V. Tetko

IBPC, Ukrainian Academy of Sciences, Kyiv, Ukraine and Institute for Bioinformatics, Munich, Germany

March 14th, ACS
Encoding molecular structures as SHUFFLED ranks of models: A new, secure way for sharing chemical data and development of ADME/T models

Igor V. Tetko

IBPC, Ukrainian Academy of Sciences, Kyiv, Ukraine and Institute for Bioinformatics, Munich, Germany
Structure-Property correlations

- Require representation (description) of the molecule in a format that can be used for machine learning methods, i.e. MLRA, neural network, PLS
- Two major systems: topological and 3D based

- Fragment-based indices
 - topological indices
 - E-state indices
- Quantum-chemical parameters
 - VolfSurf descriptors
 - Molecular shape parameters
Three scenario for structure decoding

• Can we identify the molecule provided we have it in our portfolio? -- the most difficult scenario

• Can we do the same in knowledge that the molecule can be originated from one of several chemical series?

• Can we identify the molecule provided we do not know anything about it? -- the practical scenario
Can we identify the molecule provided we have it in our portfolio? Topological indices.

- The ability to unambiguously identify a molecule is limited to information content of indices.

- If the indices contain sufficient information, the identification is possible.

- Information content of a molecule:

 - CCCCC -- 11111 (5 bits) C -- 1 bit
 - C1CCCC1N -- 12111123 (11 bits) 1 -- 2 bits
 - N -- 3 bits
Information content of molecules in set of 12908 molecules (PHYSPROP database)

<table>
<thead>
<tr>
<th>Element</th>
<th>Frequency</th>
<th>Bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>78777</td>
<td>1</td>
</tr>
<tr>
<td>c</td>
<td>76965</td>
<td>2</td>
</tr>
<tr>
<td>)</td>
<td>42336</td>
<td>3</td>
</tr>
<tr>
<td>(</td>
<td>42336</td>
<td>4</td>
</tr>
<tr>
<td>O</td>
<td>29349</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>23648</td>
<td>6</td>
</tr>
<tr>
<td>=</td>
<td>20610</td>
<td>7</td>
</tr>
<tr>
<td>N</td>
<td>16156</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>12658</td>
<td>9</td>
</tr>
</tbody>
</table>

not optimal -- Huffman, arithmetic coding, other algorithms: gz, zip -- 3.5 bits/atom, bzip2 -- 2.9 bits/atom
Information content of a molecule

- 30 -- 40 atoms -- 90 -- 110 bits
- 1 double value -- 32 bits, 3 -- 4 topological indices potentially contains sufficient information to unambiguously decode molecule with 40 atoms!
- In reality a larger number of indices can be required because of rounding effects, non-optimal storage of information
- Thus, the encoding of molecules using topological indices can be insecure.
When reverse engineering is impossible? A practical scenario.

- ALOGPS program:
 75 indices per molecule for logP
 33 indices per molecule for logS

- We use decreased resolution of data, i.e. to just 3 significant digits per index (7-10 bits instead of 32 bits)
- Additional bits are coming from range ~ 11 bits per index => 10-12 indices per molecule with 40 atoms

The information encoded in the indices could be (theoretically) adequate to decode the molecules with < 50 heavy atoms.

But, this can be too pessimistic conclusion. The theoretical possibility to decode does not propose a way how this can be done!
ALOGPS 2.1

• LogP: 75 input variables corresponding to electronic and topological properties of atoms (E-state indices), 12908 molecules in the database, 64 neural networks in the ensemble. Calculated results RMSE=0.35, MAE=0.26, n=76 outliers (>1.5 log units)

• LogS: 33 input E-state indices, 1291 molecules in the database, 64 neural networks in the ensemble. Calculated results RMSE=0.49, MAE=0.35, n=18 outliers (>1.5 log units)

• Tetko, Tanchuk & Villa, JCICS, 2001, 41, 1407-1421.
• Tetko, Tanchuk, Kasheva & Villa, JCICS, 2001, 41, 1488-1493.
• Tetko & Tanchuk, JCICS, 2002, 42, 1136-1145.
Welcome to the ALOGPS 2.1 program!

Provide CAS RN or SMILES of a molecule and press the "submit" button.

Clcccccl

Upload a file with molecule[s] in 48 formats

Benzene

CAS RN 71-43-2 formula C6H6 MW 78.11

SMILES clcccccl

logP (exp): 2.13

AOGPS 2.03 <-0.10>

IA logP

CLOGP 2.14 <+0.01>

milogP 2.13 <0.00>

KOWMN 1.99 <-0.14>

XLOGP 2.02 <-0.11>

PhysProp reference

Sangster reference

User's LogP-library (upload library)

The calculated results are available.

For more information click on a keyword or a calculated result or contact Igor V. Tetko.

You can also download a stand-alone version of the program.
Artificial Feed-Forward Back-propagation Neural Network (FBNN)
Early Stopping Over Ensemble (ESE)
ASNN: an example correction

1-kNN correction

Morphinan-3-ol, 17-methyl-

Calculated logP=3.65, δ=+0.54

\[3.65 - 0.76 = 2.89 \ (δ=+0.22) \]

Levallorphan

Calculated logP=4.24, δ=+0.76

\[4.24 - 0.54 = 3.70 \ (δ=+0.22) \]

-- both molecules are the nearest neighbors, r²=0.47, in space of residuals!
Associative Neural Network (ASNN)

A prediction of case i: $[x_i] \cdot [\text{ANNE}]_M = [z_i] = \begin{bmatrix} z_1^i \\ \vdots \\ z_k^i \\ \vdots \\ z_M^i \end{bmatrix}$

Ensemble approach:

$$\bar{z}_i = \frac{1}{M} \sum_{k=1,M} z_k^i$$

Pearson’s (Spearman) correlation coefficient $r_{ij}=R(z_i,z_j)>0$ in space of residuals

$$\bar{z}'_i = \bar{z}_i + \frac{1}{k} \sum_{j \in N_k(x_i)} \left(y_j - \bar{z}_j \right)$$

\lll ASNN bias correction

The correction of neural network ensemble value is performed using errors (biases) calculated for the neighbor cases of analyzed case x_i detected in space of neural network models.
Prediction Space of the model does not cover the “in house” compounds

Each new molecule is encoded as rank of models
Encoding of a molecule as rank of models

\[\Delta \log P = \log P_{\text{exp}} - \log P_{\text{calc}} \]

- 64 values, ranks of NN

<table>
<thead>
<tr>
<th></th>
<th>0.89</th>
<th>0.88</th>
<th>0.86</th>
<th>0.90</th>
<th>0.91</th>
<th>0.85</th>
<th>.885</th>
<th>0.83</th>
<th>0.95</th>
<th>0.94</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>7</td>
<td>8</td>
<td>4</td>
<td>3</td>
<td>9</td>
<td>6</td>
<td>10</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>0.09</th>
<th>0.08</th>
<th>0.06</th>
<th>0.10</th>
<th>0.11</th>
<th>0.05</th>
<th>.085</th>
<th>0.03</th>
<th>0.15</th>
<th>0.14</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>7</td>
<td>8</td>
<td>4</td>
<td>3</td>
<td>9</td>
<td>6</td>
<td>10</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>0.59</th>
<th>0.38</th>
<th>0.26</th>
<th>0.60</th>
<th>0.71</th>
<th>0.15</th>
<th>.485</th>
<th>0.03</th>
<th>0.95</th>
<th>0.84</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>7</td>
<td>8</td>
<td>4</td>
<td>3</td>
<td>9</td>
<td>6</td>
<td>10</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Millions of solutions provide the same ranks of NN responses --> no way to decode -- previous name of the paper, but...
How selective is rank coding?

- 8x64 = 512 bits (comparable to MDL keys)
- 126 out of 121281 Asiprox (0.1%)
- 12 out of 12908 PHYSPROP (0.1%)
ALOGPS: Extrapolation vs Interpolation

ALOGPS logP (blind): $\text{MAE} = 1.27$, $\text{RMSE}=1.63$
ALOGPS logP (LIBRARY): $\text{MAE} = 0.49$, $\text{RMSE}=0.70$
Analysis of Pfizer data

ALOGPS prediction for ElogD set of 17,861 compounds

ALOGPS "as is" → ALOGPS LIBRARY

- Pallas PrologD: $MAE = 1.06$, $RMSE=1.41$
- ACDlogD (v. 7.19): $MAE = 0.97$, $RMSE=1.32$
- ALOGPS: $MAE = 0.92$, $RMSE=1.17$
- ALOGPS LIBRARY: $MAE = 0.43$, $RMSE=0.64$

PHYSPROP data set

Total: 12908

star set

CLOGP
9429

XLOGP
1873

nova set

3479

training “nova” --> prediction
star set
Prediction performance as function of similarity in space of models of “star” set

Blind prediction

max correlation coefficient of a test compound to training set compounds

MAE=0.43

LIBRARY mode

max correlation coefficient of a test compound to LIBRARY compounds

MAE=0.28 (0.26)
Reliability of new compound predictions

- NCI, 250,000
 - >0.7
 - ~0.6
 - ~0.5
 - ~0.4
 - <0.3

- http://asinx.com, 120,000
 - 0.2-0.4
 - 0.4-0.6
 - 0.6-0.8

- http://ambinter.com, 650,000
 - 0-0.2

PHYSPROP
Reliability of new compound predictions

- **NCI, 250,000**
 - http://ambinter.com
- **http://asinex.com**, 120,000
- **http://ambinter.com**, 650,000

- **Aurora data**
 - 0.8-1: <0.3
 - 0.6-0.8: ~0.4
 - 0.4-0.6: ~0.5
 - 0.2-0.4: ~0.6
 - 0-0.2: >0.7

- **PHYSPROP**
 - 0.8-1: <0.3
 - 0.6-0.8: ~0.4
 - 0.4-0.6: ~0.5
 - 0.2-0.4: ~0.6
 - 0-0.2: >0.7
Is identification possible?

PHYSPROP -- Asinex study

\[r^2 = 0.97 \]

\[r^2 = 0.85 \]

\[r^2 = 0.82 \]
Is identification possible?

PHYSPROP -- Asinex study
Is identification possible?
PHYSPROP -- Asinex study

0.61

0.60

0.60
Securing the data -- shuffling ranks!

Shuffle $r^2=0.8$

Shuffle $r^2=0.6$
Rank shuffling

- Shuffled rank molecule is less similar to itself than the molecules from the other series will be pick-upped --> secure encoding
- Different molecules will have different distribution of neighbors as function of similarity=> lower level of security (e.g. 1 in 10^5, 1 in 10^6) can be determined individually for each single compound using an external library (e.g. complete enumeration, compilation of public libraries)
- Everything can be done in completely automatic mode
Possible approaches

Raw topological indices

• Development of new global models, after the development the data can be discarded
• There is a theoretical possibility to decode the structure, particular for smaller number of atoms in a molecule (not clear if such algorithm can be realized)
• One-to-one contract may be required...

Rank of models

• Allows to incorporate explicit structural parameters as feature elements
• No limitation on the number of indices
• The quality of local correction is comparable to retraining
• Very appealing to share on the WWW
• Security can be controlled by shuffling but will deteriorate prediction quality of model

Development of new models

• Develop new models in-house
• Provide them to be included in the set of models
• Predict new data using an ensemble of diverse models (ASNN in space of models of different companies)
• A complete set of automated tools to develop them can be provided
Acknowledgement

Part of this presentation was done thanks to Virtual Computational Chemistry Laboratory INTAS-INFO 00-0363 project (http://www.vcclab.org).

I thank Prof Hugo Kubinyi, Drs Pierre Bruneau and Gennadiy Poda for collaboration and Prof. Tudor Oprea for inviting me to participate in this conference.

Thank you for your attention!