HelmholtzZentrum münchen

German Research Center for Environmental Health

Speeding-up Drug Development with Confident Predictions of ADME/T properties

Igor V. Tetko

Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH) Institute of Bioinformatics & Systems Biology (HMGU)

Heidelberg, 11 October 2008

Declining R&D productivity in the pharmaceutical industry

Source : PhRMA 2007, FDA

HelmholtzZentrum münchen

German Research Center for Environmental Health

Reasons for failure in drug development

Pharmacokinetics
Animal toxicity
Adverse effects
Lack of efficacy
Commercial reasons
Miscellaneous

> 60% of drug failures are due to absorption, distribution, metabolism, excretion and toxicology (ADME/T) problems

ChellOneUcarementerentareceftheaiunenfarererablehőds

Possible: $10^{60} - 10^{100}$ molecules theoretically exist (> 10^{80} atoms in the Universe)

Achievable: $10^{20} - 10^{24}$ can be synthe (weight of the Moon is ca 10^{23} kg)

Available: 2*107 molecules are on the

Measured: $10^2 - 10^4$ molecules with A

Problem: To predict ADME/T propertie market we must extrapolate data molecules!

We need methods which can estimate the accuracy of predictions!

Models can fail due to chemical diversity of training & test sets

HelmholtzZentrum münchen

German Research Center for Environmental Health

Benchmarking of logP methods for in-house data of Pfizer & Nycomed

LogP - octanol/water partition coefficient

One of the most important descriptors in the drug discovery

Correlates with many biological and ADME/T properties of molecules

Supported with one of the largest experimental database

3rd dedicated conference will be in Zurich next year (logP2009)

Performance of algorithms for in-house datasets

	Pfizer set (<i>N</i> = 95 809)							Nycomed set (N = 882)				
	RMSE	Failed ¹	rank	% in	error ra	ange	RMSE,	RMSE	rank	% in	error r	ange
Method				<0.5	0.5- 1	>1	excluded ²			<0.5	0.5- 1	>1
Consensus log P	0.95	-		48	29	24	0.94	0.58		61	32	7
ALOGPS	1.02		Т	41	30	29	1.01	0.68	Т	51	34	15
S+logP	1.02		I	44	29	27	1.00	0.69	I	58	27	15
NC+NHET	1.04		Ш	38	30	32	1.04	0.88	Ш	42	32	26
MLOGP(S+)	1.05		II	40	29	31	1.05	1.17	III	32	26	41
XLOGP3	1.07		II	43	28	29	1.06	0.65	Т	55	34	12
MiLogP	1.10	27	II	41	28	30	1.09	0.67	Т	60	26	14
AB/LogP	1.12	24	II	39	29	33	1.11	0.88	III	45	28	27
ALOGP	1.12		II	39	29	32	1.12	0.72	II	52	33	15
ALOGP98	1.12		II	40	28	32	1.10	0.73	II	52	31	17
OsirisP	1.13	6	Ш	39	28	33	1.12	0.85	II	43	33	24
AAM	1.16		Ш	33	29	38	1.16	0.94	Ш	42	31	27
CLOGP	1.23		III	37	28	35	1.21	1.01	III	46	28	22
ACD/logP	1.28		III	35	27	38	1.28	0.87	III	46	34	21
CSlogP	1.29	20	III	37	27	36	1.28	1.06	III	38	29	33
COSMOFrag	1.30	1088 ³	III	32	27	40	1.30	1.06	III	29	31	40
QikProp	1.32	103	III	31	26	43	1.32	1.17	III	27	24	49
KowWIN	1.32	16	III	33	26	41	1.31	1.20	III	29	27	44
QLogP	1.33	24	III	34	27	39	1.32	0.80	II	50	33	17
XLOGP2	1.80		III	15	17	68	1.80	0.94	III	39	31	29
MLOGP(Dragon)	2.03		III	34	24	42	2.03	0.90	III	45	30	25

¹Nr of molecules with calculations failures due to errors or crash of programs. All methods predicted all molecules for the Nycomed dataset. ²*RMSE* calculated after excluding of 769 zwitterionic compounds from the Pfizer dataset. ³Most molecules failed by COSMOFrag are zwitterions.

HelmholtzZentrum münchen German Research Center for Environmental Health

Mannhold, R. et al, J. Pharm. Sci., 2008, in press.

http://www.vcclab.org

Virtual Computational Chemistry Laboratory

ALOGPS 2.1

- •LogP: 75 variables, 12908 molecules, RMSE=0.35, MAE=0.26
- •LogS: 33 variables, 1291 molecules, RMSE=0.49, MAE=0.35

Tetko et al, J. Comput. Aided Mol. Des. 2005, 19, 453-463. Tetko & Tanchuk, J. Chem. Info. Comput. Sci., 2004, 2002, 42, 1136-1145.

HelmholtzZentrum münchen

German Research Center for Environmental Health

				OO JME Editor of Peter					
W	elcome	e to the A	LOGPS 2	UCLR DEL D-R +A					
				$\neg - = = \sim \triangle \Box \bigcirc$					
Provide CAS RN	l or SMILES of	c 🔨							
C1(C(O)=O)=C	(N)C=CC=C1	N							
Upload a file w	ith molecule(s	•							
2-Aminobenz	oic Acid	S NH2 OH							
CAS RN	118-92-3	<u>formula</u>	C7H7NO2	F					
SMILES OC(C)	l=CC=CC=C1	N)=O		Submit SMILES Close					
logP (exp) :	1	.21	<u>loqS (exp)</u> :	-1.52 (4.14 g/l)					
ALOGPs	0.84 <	-0.37>	ALOGp5	-1.31 (6.78 g/l) <+0.21>					
IA_logP	0.67 <	-0.54>	IA_logS	-1.40 (5.46 g/l) <+0.12>					
AB/LogP	1.36 <	+0.15>	AB/logS	-1.63 (3.21 g/l) <-0.11>					
<u>COSMOFraq</u>	1.13 <	<-0.08>							
<u>QloqP</u>	0.72 <	-0.49>	<u>AB/pKa (Bas</u>	<u>e)</u> 2.40					
<u>miLoqP</u>	1.46 <	+0.25>	<u>AB/pKa (Acid</u>	<u>d)</u> 5.00					
<u>KOWWIN</u>	1.36 <	+0.15>							
<u>XLOGP</u>	1.46 <	+0.25>	PhysProp ref	erence					
<u>Average logP</u>	1.13(+-0.	34) <-0.08>	Sangster's re	eference					
User's LogP_LIBRARY upload library			User's <u>LogS</u>	User's LogS_LIBRARY upload libra					
Click	on calculated	result to see me	thod description of	or details of calculations.					
	riess Logr of	We wish you to I	have only good re	sults!					
The calculated	results are av	ailable.							

Methodology: Associative Neural Network (ASNN)

Some software tools rely just on one "best" model.

Other software tools rely on the ensemble average ("panel of experts").

ASNN explores disagreement of individual models in the ensemble to improve its accuracy and to derive a confidence score.

See references at http://www.vcclab.org

Highlighted Examples

- Development of focused (local) models
- Estimation of accuracy of predictions
- Multi-task learning

This model does not work for these data...

Is it possible to improve it by using new measurements?

Local models: Instance learning of logP for PtII molecules

The Figure shows that prediction of new classes of compounds can be extremely difficult as exemplified by an absence of correlations between predicted and experimental values.

HelmholtzZentrum münchen German Research Center for Environmental Health

Tetko et al, J. Inorg. Biochem, 2008, 102, 1424-37. HELMHOLTZ

Local models: Instance learning by knowledge transfer

The right panel shows that our methodology (red column) allowed to calculate superior prediction (lower errors) compared to traditional methods.

Local models: Instant learning of in-house data (Pfizer Inc.)

ALOGPS prediction for ElogD set of 17,861 compounds

The LIBRARY mode produced local models and dramatically decreased the error for a very large set of compounds in just less than 10 minutes of calculations.

HelmholtzZentrum münchen German Research Center for Environmental Health Tetko & Poda, J. Med. Chem., 2004, 94, 5601-5604.

Is it possible to distinguish reliable vs. nonreliable predictions?

Is it possible to save costs by skipping measurements of some molecules?

Global model: Accuracy of logP predictions for 96,000 molecules

HelmholtzZentrum münchen German Research Center for Environmental Health

Mannhold, R. et al, J. Pharm. Sci., 2008, in press.

Local model: Accuracy of logP predictions for a subset of data

Associative Neural Network similarity

HelmholtzZentrum münchen

German Research Center for Environmental Health

Tetko, I.V. et al, DDT, 2006, 11, 700-7.

The measurements are very expensive...

Is it possible to use some related measurements to develop a better model?

Multi-task learning

Problem:

- prediction of tissue-air partition coefficients
- small datasets 30-100 molecules (human & rat data)

Results:

simultaneous prediction of several properties increased the accuracy of models

Human data

HelmholtzZentrum münchen German Research Center for Environmental Health Varnek et al, 2008, submitted.

Challenges and solutions

New methodology allows navigation in space of molecules with a confidence.

- \checkmark It can be used to develop targeted (local) models to cover specific series.
- \checkmark It can be used to reliably estimate which compounds can/can't be reliably predicted.
- \checkmark It can be used to provide experimental design and to minimize costs of new measurements.

Acknowledgement

Dr. G. Poda (Pfizer)

Dr. P. Bruneau (AstraZeneca)

Dr. C. Ostermann (Nycomed)

Prof. R. Mannhold (Dusseldorf University)

+ many other colleagues & co-authors

Prof. G. Wess Prof. H.W. Mewes

Go-Bio BMBF FP6 INTAS (VCCLAB, http://www.vcclab.org)

