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Prediction Space of the model does not cover the
“in house” compounds

“In house” data

Training set data

= Applicability domain
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*Selwood et al, 1990, J. Med. Chem, 33, 136.
Tetko et al, DDT, 2006, in press

QSAR of antifilarial antimycin analogues*

in vitro activity 
–log (EC50) = 0.016 mp + 
0.56 logP - 6.14 
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Applicability Domain Methods

• Range-based
• Geometric
• Distance-based (Euclidian,

leverage)
• Probability-density distribution

• Property-based tailoring
• Weighted distances

• Ensemble methods
• Analysis of residuals

Space of
descriptors

Space of
models

Netzeva et al, ATLA, 2005, 33(2), 155-173.
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Why property-based space?

In space of descriptors:
• Detection of correct neighborhood relations depends on selection, pre-

processing (e.g., PCA) and normalization of descriptors
• Dependencies in the  input space are static and do not change with

analyzed properties

But...
• Supervised learning method select the best combination of descriptors
• Provide their normalization (and non-linear transformations)

Thus
• We should profit from the supervised methods and use the supervised

models to define the molecular similarity, the property-based molecular
similarity.
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Nearest neighbors in the input space
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Nearest neighbors and activity
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x=x1+x2 !

The nearest
neighbors in
descriptor space
are not always
neighbors in the
property space!
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Nearest neighbors and activity
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neighbors in
property are not
neighbors in
descriptor space!
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Ensemble methods

Hansen, L.K.; Salamon, P. IEEE Trans. Pattern. Anal. Mach. Learn., 1990, 12, 993.
Tetko, I. V.; Luik, A. I.; Poda, G. I. J. Med. Chem., 1993, 36, 811.
Tetko, I.V.; Livingstone, D. J.; Luik, A. I. Neural Network Studies. 1. Comparison of
Overfitting and Overtraining. J. Chem. Inf. Comput. Sci. 1995, 35(5), 826.
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Encoding of a molecule as a rank of models

21106934875

0.940.950.83.8850.850.910.900.860.880.89

-->  3D, E-state descriptors

-->  C1=CC=CC=C1

-->  + property
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An example of an ensemble analysis
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-- both molecules are the
nearest neighbors, r2=0.47, in
space of residuals amid
>12,000 molecules!

N

HO

N

HO

logP=3.11

logP=3.48

Morphinan-3-ol, 17-methyl-

Levallorphan

Rank correlation of
models residuals
defines the property
based similarity of
molecules.

Tetko, I.V.; Villa, A.E.P. Neural Networks, 1997, 10, 1361-1374
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Detection of nearest
neighbors in space of
models uses invariants
in “structure- property”
space.

Nearest neighbors for Gauss function

All nearest neighbors
are detected correctly
using similarity in the
property-based space !

Tetko, I.V. JCICS, 2002, 42, 717.
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ALOGPS 2.1
••LogPLogP:: 75 input variables corresponding to electronic and topological properties
of atoms (E-state indices), 12908 molecules in the database (PHYSPROP), 64
neural networks in the ensemble. Calculated results RMSE=0.35, MAE=0.26,
n=76 outliers (>1.5 log units)
•LogS: 33 input E-state indices, 1291 molecules in the database, 64 neural
networks in the ensemble. Calculated results RMSE=0.49, MAE=0.35, n=18
outliers (>1.5 log units)

 Both models use property-based similarity for model correction.

• Tetko, Tanchuk & Villa, JCICS, 2001, 41, 1407-1421.
• Tetko, Tanchuk, Kasheva & Villa, JCICS, 2001, 41, 1488-1493.
• Tetko & Tanchuk, JCICS, 2002, 42, 1136-1145.
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Nearest neighbors in different spaces

The same 74
E-state descriptors
were used

GSE of S. Yalkowsky
logS = 0.5-0.01(MP-25) - logP 
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Pallas PrologD : MAE = 1.06, RMSE=1.41
ACDlogD (v. 7.19): MAE = 0.97, RMSE=1.32
ALOGPS:     MAE = 0.92, RMSE=1.17
ALOGPS LIBRARY: MAE = 0.43, RMSE=0.64

Tetko & Poda, J. Med. Chem., 2004, 94, 5601-5604. 

Analysis of Pfizer data
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Accuracy of logP prediction as function of R

AstraZeneca blind
AstraZeneca LIBRARY
Pfizer LIBRARY

Tetko et al, Can we predict accuracy of ADMET?  DDT, 2006, in press.

MAEpred=0.302*R-0.6

R is a maximum
correlation (r2) of a
query molecule to a
molecule in the
training set (LIBRARY)
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Estimated and calculated Mean Absolute Errors
for AstraZeneca (AZ), Pfizer (PFE) and iResearch

Library sets

AZ - 7498 molecules
PFE - 8750 molecules
IResearch ChemNavigator Library - 13,333,629 molecules
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Prediction of iResearch Library (13*106

molecules) in blind mode and using
PFE LIBRARY

• >514,000 molecules logP> 5  --> logP<5

• >495,000 molecules changed |logP| > 1

PFE dataset contains 8750 molecules
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Secure sharing of information
but not molecules

• Organized by T. Oprea, 229th  ACS, San Diego
• Two dedicated session (CINF, COMP) ca 20 participants
• Too secure sharing makes impossible model development

(relevant information is lost)
• Less than 1 bit/atom is required to store molecules in “zip” file

(1 float value for molecule with 35 atoms)
• Thus, any proposed method can be secure until they are

“hacked”
• Probably sharing molecular descriptors of a target molecule is a

quite difficult business
• We can share ranks of models -- limited to the existing model
• But …. let us share reliably predicted molecules!
• These are the molecules with high R in property space to the

target molecule
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Real data vs surrogate data model for
logP prediction

Real = surrogate = 
1949 molecules

•Take a “real” molecule from PHYSPROP logP dataset
•Find for it a significantly correlated molecule r2>0.3 in the
IResearchLibrary (use additional filters to filter structurally similar ones)
•Name it as a “surrogate” molecule, calculate for it logP value -->
“surrogate data”
•Use “real” molecules with real logP values  and “surrogate data”
(dissimilar molecules with predicted logP) to develop models
•Predict all 12908 PHYSPROP molecules using both models

Att: It is a property-specific
data sharing!!!
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Real and surrogate molecules for logP

Tetko, Abagyan,Oprea
J. Comp. Aid. Mol. Des.
2005,19, 749.
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Conclusions
• Residuals of an ensemble provide a new, target-activity-specific, representation of molecules --

they are not a noise but a very valuable information!
• Similarity in property-based space can be introduced as a distance (e.g., rank correlation)

between vector of residuals1,2 that is very specific for the target property3,4

• This similarity is a heart of the Associative Neural Network method2,3 used in the ALOGPS2

and 1H NMR7 prediction programs
• It detects meaningful nearest neighbors, allows mechanistic interpretation3,4

• It can be used to estimate accuracy of prediction  of models5 --  YES
• It can be used for secure data sharing6 and it is used in 1H NMR program* - YES
• The methodology is used in logP LIBRARY builder of TRIDENT (Wavefunction Inc) and (will

be) used in ADMET predictor of SimulationPlus Inc.**

1) Tetko, I.V.; Villa, A.E.P.  Neural Networks, 1997, 10, 1361.
2) Tetko, I.V.; Tanchuk, V. Yu. JCICS, 2002, 42, 1136.
3) Tetko, I.V. JCICS, 2002, 42, 717.
4) Tetko, I.V. in D.J. Livingstone, Neural Networks: Methods and Applications, CRC, 2007, in press.
5) Tetko, I.V., Bruneau, P., Mewes, H.W., Rohrer, D., Poda, G.I. DDT, 2006, in press.
6) Tetko, I.V.; Abagyan, R.; Oprea, T.I. J. Comp. Aid. Mol. Des. 2005, 19, 749.
7) Da Costa, F. B.; Binev, Y.; Gasteiger, J.; Aires-De-Sousa, J. Tetrahedron Letters 2004, 45, (37),

6931.

*-personal communication from Prof. J. Aires-De-Sousa
**-personal communication from Dr. R. Fraczkiewicz
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g See also VCCLAB poster!

Free (use/download) at http://vcclab.org


