
 
 

1 

Can We Estimate the Accuracy of ADMET Predictions? 
 
 

Igor V. Tetko,1,2,* Pierre Bruneau,3 Hans-Werner Mewes,1  
Douglas C. Rohrer,4 Gennadiy I. Poda4 

 
 

1 – GSF - Institute for Bioinformatics, 85764 Neuherberg, Germany 
 

2-Institute of Bioorganic & Petrochemistry, Murmanskaya 1, 02094 
Kiev, Ukraine 

 
3 – AstraZeneca Centre de Recherche Parc Industriel Pompelle BP 

1050 – 51689 Reims Cedex 2, France 
 

4 – Structural and Computational Chemistry, Pfizer Global Research 
and Development, 700 Chesterfield Parkway West, Chesterfield, MO 

63017, USA 
 

    

pre-print of the article published in: 

 

Drug Discovery Today, 2006, vol. 11, (15/16), 700-707. 

 

Address for correspondence: Igor V. Tetko 
GSF – National Research Centre for Environment and Health 
Institute for Bioinformatics (MIPS) 
Ingolstädter Landstraße 1, 
85764 Neuherberg, Germany 
Telephone: +49-89-3187-3575 
Fax: +49-89-3187-3585 
e-mail: itetko@vcclab.org 

 

Running head: Applicability domain of ADMET models 

Keywords: physico-chemical property prediction, model accuracy, applicability 

domain, molecular similarity, property-based similarity 

 

Teaser: Is there a distinct relationship between the accuracy of prediction and 

molecular similarity? Can we estimate the accuracy of property prediction for new 

compounds? 

 

This manuscript contains 17 pages including an abstract, 1 table and 3 figures. 



 
 

2 

 
This article reviews recent developments in methods to access the accuracy of 

prediction and applicability domain of ADMET models and methods to predict 
physico-chemical properties of compounds in the early stages of drug development. 
The methods are classified into two main groups, namely, methods based on the 
analysis of similarity of molecules and methods based on the analysis of calculated 
properties. Using the example of octanol-water distribution coefficients we exemplify 
consistency of estimated and calculated accuracy of the ALOGPS program 
(http://www.vcclab.org) to predict in house and publicly available datasets. The 
importance of the methods for improvement of the quality of the high-throughput 
screening and hits triage, and in particular to avoid improper filtering of compounds 
standing far from the investigated chemical space is discussed. 
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 Each year an increasing number of computational methods devoted to the 
development of predictive ADMET models is published. Despite the fact that their 
importance for the drug discovery process is well recognized [1], the available 
methods are not yet sufficiently reliable and are limited in their application [2]. For 
example, recent reviews [3,4] indicate that as many as 50 articles devoted to 
methodological developments to predict lipophilicity and aqueous solubility are 
projected to be published in 2005. This is about a 5-fold increase compared to 1995. 
However, the prediction accuracy for proprietary datasets remains disappointingly 
low [5-8]. 
 One can describe such relative levels of failure in terms of the applicability 
domain (AD) of the models. In the “ontology” classification of the model failure, one 
can distinguish at least two major problems: experimental design and diversity of 
compounds. The experimental design problems can result from different end-points of 
the models, [9] i.e. agreement of protocols used in the development of the models, 
data consistency and quality and model applicability. 
 The second reason for model failure is the difference in chemical space of 
compounds that were used to develop and apply the models. This problem can also be 
attributed to experimental design problems: in predictive models, both training and 
test set compounds have to be from the same chemical space [10-14]. However, there 
are at least two principal reasons making such a situation unlikely. First, because of 
the proprietary nature of research in pharmaceutical firms, one can not expect a 
situation when a sufficient amount of proprietary experimental data will be publicly 
released to develop specific models [15]. Second, the available chemical space of 
synthetically feasible chemistry is extremely large. Therefore, it is unrealistic to hope 
that a “magic bullet”, i.e. a method that would reliably predict physico-chemical 
properties of any possible chemical, will be developed. 
 The problem of the AD of chemical models has also received great attention in 
the European Union (EU). As a result of a new system for Registration Evaluation 
and Authorization of Chemicals (REACH), the EU requires a clear estimation of the 
accuracy of developed QSAR models before they can be used within the REACH 
system. The European Center for the Validation of Alternative Methods (ECVAM) 
recently published a comprehensive meeting report with the results of the current 
status of the field [16]. The AD of a model is defined in this study as: “the response 
and chemical structure space in which the model makes predictions with a given 
reliability”. 
 In this review we focus mainly on methods to predict selected physico-
chemical properties of compounds, particularly lipophilicity and aqueous solubility. 
These two properties are supported with the largest experimental datasets collected by 
industry and publicly available databases, e.g. PHYSPROP 
(http://esc.syrres.com/interkow/KowwinData.htm) or LOGKOW 
(http://logkow.cisti.nrc.ca), and, thus, they are frequently used to develop and test new 
methods to estimate the accuracy of prediction of these properties. We will consider 
two major groups of methods: approaches based on analysis of similarity of 
molecules (“molecular-based similarities”) and approaches based on analysis of 
calculated ADMET or physico-chemical property models (“property-based 
similarities”). 
 
Methods that employ molecular-based similarities 
 The main hypothesis of this group of methods is based upon an assumption 
that similar molecules exhibit similar properties [17]. Neighborhood behavior can be 
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expected for additive properties, i.e. when addition of each additional group of atoms 
or a functional group consistently provides a certain increase or decrease of the target 
property of molecules. The success of fragment-based methods [3,4,18,19] for the 
prediction of physico-chemical properties does confirm that some of them can be 
considered as additive. Thus, it is not surprising that methods employing molecular-
based similarities have been widely developed. 
 
The truth about “missing fragments” 
 In QSAR methods, in particular fragment-based approaches, the accuracy of 
prediction depends upon the presence of all fragments required to estimate a given 
property. The accuracy decreases when some fragments are entirely absent in the 
training set, or have a very low frequency of appearance. Thus, for these fragments, 
no statistically significant coefficients can be calculated. For example, users of 
CLOGP program [20] are familiar with the problem of missing fragments, 
particularly in the earlier versions of this software. The CLOGP calculator of version 
4 and below refused to predict lipophilicity for molecules containing such fragments. 
Later on, a “no missed fragments” version of the program was developed, which 
included “ab initio” estimation of the contributions of the missed fragments [21]. It 
was claimed to estimate accuracy of new compounds with an error below 0.5 log 
units. However, our studies indicated that about 67% of molecules (376 out of 558) 
with large prediction errors in logP (>1.5 log units) in the PHYSPROP dataset 
contained fragment values calculated by the “ab initio” method [22]. The ALOGPS 
program [22], which predicts lipophilicity and aqueous solubility of chemical 
compounds, flags unreliable predictions if the analyzed molecule contains one or 
more E-state atom or bond types that were missed in the training set. This simple flag 
made it possible to indicate 90% of outlying molecules (357/394) with large 
prediction errors (>1.5 log units) for the same training and test sets. 
 The ISIDA software suite [23] calculates an average model as a combination 
of n=3-5 of the most statistically sound models developed with up to 49 different 
types of molecular fragments. When testing a new molecule, the models that contain 
missed fragments are not considered in the averaging. This makes it possible, on the 
one hand, to moderate the problem of missed fragments and, on the other, to improve 
the predictive ability of the method as demonstrated by benchmarking studies [24]. 
By analyzing the number of rejected models, as well as the variance of model 
predictions, the user can have a qualitative assessment of the reliability of the 
predicted value. 
 Thus, while the problem of “missing fragments” is sometimes considered to be 
a drawback of the approach, it does have an important quality control role. 
Experimental measurements of compounds with missing fragments can be used to 
determine the contribution of such fragments and thus, increase the predictive power 
of the method [25]. 

The use of the expert knowledge to define the AD, e.g. the mechanistic 
analysis of chemical reactions leading to skin sensitization [26], can be also classified 
to the group of methods considered in this section. 
 
AD in the descriptor space 
 The “missing fragment” approach will work only in cases where a new 
molecule contains fragments not covered in the training set. The problem with this 
method lies with the definition of a missing fragment. One can treat the whole 
molecule as a fragment. Thus, depending on the methods used to generate the 
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fragments, different approaches developed using the same training set will find 
different molecules as having “missing fragments”. The “missing fragments” 
approach is not directly applicable to methods that rely on descriptors determined for 
molecules as a whole, e.g. topological descriptors [27,28]. 
 The analysis of the range of descriptors was shown to be a very efficient 
approach for the determination of the AD of models. It is the basis of the Optimal 
Prediction Space (OPS) used in the TOPKAT package [10,29]. The OPS was initially 
developed for the prediction of lipophilicity of chemical compounds in the VLOGP 
program [10]. The authors discussed the importance of the development of a robust 
model and provided several characteristics that would be necessary for the model to 
be robust: all descriptors are significant, there are no compounds with unique 
variables, no outlying or leverage compounds are left in the training set, residuals are 
normally distributed and cross-validation results are not statistically different from 
those calculated for the training set. After the creation of such a model, the range-
based cut-offs are used to determine whether the query molecule is inside or outside 
of the space of the training set of molecules (for more details see the TOPKAT patent 
[29]). Using a test set of 113 compounds, the authors demonstrated that the predictive 
ability for 29 compounds outside OPS was about five times lower than compounds 
inside it [10]. Therefore, the use of OPS allows discriminating between “bad” and 
“good” predictions. 
 The ranges in the descriptor space were applied to define the ADs for 
KowWIN [30]. The authors concluded that Principal Component Analysis (PCA) 
provided the simplest acceptable solution and the use of more complex distance-based 
molecular similarity approaches in the descriptor space did not improve the results. 
 Because of its simplicity and the ease of interpretation, the analysis of 
“missing fragments” and range of descriptors is used in major physico-chemical 
software packages produced by ACD Labs LogD/Solubility suite, BioByte CLOGP, 
Simulation Plus ADMET Predictor, QikProp2.2 and others. 
  
Methods based on similarity of molecules in the descriptor space 
 A sound classification of methods based on the similarity of molecules in the 
descriptor space was proposed in ref. [31]. According to this article, the methods can 
be attributed to several major categories: i) range-based methods ii) geometric 
methods iii) distance-based methods and iv) probability-density distribution range 
methods. Some of these methods are implemented in the Ambit software 
http://ambit.acad.bg. The methods considered in the previous two sections fall into the 
first category. The geometric methods determine a convex hull or convex envelope, 
i.e. the smallest convex region enclosing all points from the training set. This convex 
hull can be used to define the AD of the model (Figure 1B). The hull, however, may 
contain data regions with a low density of points and, thus, result in models with low 
accuracy. Actually, the requirement of OPS to build a model without outlying or 
leveraging compounds implicitly tries to avoid such situations. 
 The distance-based methods calculate a distance from the test set compounds 
to the training set compounds. Different measures, such as Euclidian (eq. 1), city 
block, as well as three other interrelated measures such as Mahalanobis, hotelling T2 
and leverage were used to assess quality of predictions [31-35]. 
 
  Dij=(Σ(xi

k-xj
k)2)1/2       (1) 

 
The leverage is defined as 
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  h=xT(XTX)-1x        (2) 
 
Where x is the vector of descriptors of a query compound and X is the matrix formed 
with descriptors from the training set. High h values indicate that the analyzed 
compound stands out from the training set and may involve extrapolation rather than 
interpolation. Leverage was recommended for assessing AD in a number of studies 
[36,37]. 
 The more complex probability density distribution-based methods (Figure 1C) 
can also be used to detect dense and low populated regions of the structural space 
[16]. These methods are, however, computationally intensive and, thus, can not be 
efficiently used in models involving a large number of descriptors or molecules 
[16,30]. Of course, one can also attempt to correlate the accuracy of prediction with a 
number of other molecular similarities, e.g. based on the shape of molecules, their 
electron densities, molecular holograms and others as reviewed in [38,39]. 
 To use the methods described in this section mostly relies upon the 
establishment of a threshold value for compounds lying inside and outside of the AD. 
Some authors connected the predictive accuracy for molecules with their distance 
measures from the training set of compounds. Such distance measures include a 
dimension related distance, a combined Euclidian distance to the mass centre of the 
convex hull and a distance to the nearest vertex amongst others [11]. Those 
compounds outside of the convex hull were additionally penalized. This measure 
allowed the authors to calculate confidence levels for the prediction of the aqueous 
solubility of molecules. 
 A comprehensive study based on 20 diverse, in house, activity datasets, 
including logD, aqueous solubility, pKa and biological activities was performed to 
correlate accuracy of prediction with molecular similarity to the training sets [12]. 
The authors explored a variety of different machine learning methods using five sets 
of descriptors, ranging from regular atom pair to 3D structure-based. The accuracy of 
prediction correlated best with its similarity to the nearest molecule in the training set 
or with the number of neighbors in the training set. Moreover, according to the 
authors, this trend did not depend on the nature of used descriptors or on the 
employed QSAR method. 
 Structural similarity can be also used to guide the model selection. The 
accuracy of aqueous solubility prediction of the most structurally similar molecules to 
the target compound was estimated using several published models [40] and the 
model with the lowest bias was selected to predict the target compound. 
 
AD based on predicted property 
 The previous approaches were mainly focused on molecular descriptors and 
actually ignored the most important descriptor, the predicted property itself. In fact, 
the target property was implicitly included in the similarity measures, since it guided 
the selection of sets of descriptors to optimize the target property. This kind of 
molecular similarity, based on relevant descriptors only, is known as tailored 
similarity [41] and its applications were reviewed elsewhere [42]. One way to 
enhance the influence of the target property on the AD determination is to weigh the 
variables for similarity distances measures using, e.g., importance of descriptors in the 
model, such as 
 
  Dij=(Σwk(xi

k-xj
k)2)1/2       (3) 
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where weights wk correspond to the importance of the kth descriptor in the model 
calculated using auto-scaled descriptors [16]. The weighting makes it possible to 
account for relative contribution of each variable to the similarity and improves 
detection of the AD of the model. 
 A number of methods explore variations in the model residuals as a measure 
of accuracy and, thus, estimate the AD of the models. In this type of analysis not one 
but a set (ensemble) of models is usually generated (e.g., generating models using 
different subsets of the data [43], different variables [44] or using simulated annealing 
[45]). The residuals and/or confidence values of predictions are analyzed to derive the 
AD of the models. 
 Significant variation of predictions of some molecules that could indicate low 
confidence in their classification was reported some time ago [46]. The use of 
statistical tests and a large number of models was proposed to improve accuracy of 
prediction for such cases. Other studies indicated that even with as many as 10,000 
models, no significant consensus predictions could be derived for some data 
compounds [47]. Thus, molecules with low predictive confidence may have low 
prediction accuracy, i.e. they are not covered by the AD. Recently, several approaches 
were derived to provide qualitative and quantitative estimates. 
 The decision forest method builds multiple models by combining, in one 
predictor, results of multiple decision trees (DTs) [44]. The DTs are constructed to be 
as heterogeneous as possible, using each variable maximum one time in the models. 
Using the example of the analysis of œstrogen receptor binding, the authors 
demonstrated that the prediction accuracy of molecules increased as the confidence 
level of the prediction increased [16,48]. 
 A similar effect was observed in methods developed to discriminate soluble 
from poorly soluble molecules [49]. The authors applied an ensemble of neural 
network models and demonstrated that molecules with small standard deviations of 
predictions (<0.01) had 2-3 times lower errors compared to the rest of the dataset. 
Thus, predictions with high standard deviations are outside of the AD of models. 
 In another study [32], the standard deviation of predictions issued from an 
ensemble of Bayesian Regularized Neural Nets has been shown to be positively 
correlated with the distance to the model and both metrics correlate well with the 
errors of predictions. They were combined [50] to determine a combined distance 
measure as 
 
 CDi,model=(sdi*Di,model)1/2       (4) 
 
where sdi is the dispersion of predictions of the compound i, and Di,mod is the 
minimum Mahalanobis distance from the analyzed compound to all compounds in the 
training set. The use of the combined distance provided better estimation of the 
accuracy of new compound prediction compared to the Mahalanobis distance itself. 
 The Associative Neural Networks [43] uses residuals calculated from an 
ensemble of models to define a new representation of molecules. In this approach 
each molecule is represented as a vector of residuals. A similarity function between 
molecules is then introduced as a rank correlation between these vectors (see also ref. 
[51] for other measures). A property-based similarity, R, of a given molecule to a 
dataset is identified as a square of maximum correlation of a vector of residuals of the 
query molecule to vectors of residuals of all molecules in the training dataset [52]. 
Using an example of lipophilicity prediction from a PHYSPROP dataset using the 
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ALOGPS program [22,51], we have shown that molecules with R>0.8 and R<0.3 had 
mean absolute errors (MAE) of approximately 0.3 and 0.7 log units, respectively [52]. 

The estimations based on model analysis are pertinent to the target property 
and may provide more accurate results [42,43]. For example, only two out of five 
nearest neighbors of biphenyl in the lipophilicity and aqueous solubility spaces were 
the same (Figure 2), despite both models used the same descriptors. The neighbors of 
biphenyl in the logS space were symmetric and all contained two phenyl rings. This 
reflected widely known importance of crystal packing of compounds and thus 
symmetry of molecules for their aqueous solubility. The symmetry was not important 
in the logP space as exemplified by non-symmetric nearest neighbors of biphenyl 
detected in this space.  

Prediction of complex properties, e.g. biodegradation, may also benefit from 
hierarchical analysis of reliability of predictions on different stages of simulated 
metabolism [53]. 
 
Are assessments of the AD robust? 
 The methods described in this review have usually been applied to a limited 
number of compounds or series of molecules measured by one company or 
experimental group. There is some skepticism as to whether these methods would be 
sufficiently robust for practical applications, i.e. to give consistent predictions for data 
measured at different pharmaceutical firms. In the next section we will focus on a 
practical application of the AD estimation for logD experimental data measured by 
two major pharmaceutical companies. 
 
Estimation of the accuracy of the logP prediction using the ALOGPS program 
 A PHYSPROP dataset containing 12,908 experimental logP measurements 
(training set), and two datasets with experimental logD measurements for 7,498 
neutral compounds from AstraZeneca (AZ) and 8,750 neutral compounds from Pfizer 
(PFE) were used and were as described in previous publications [5,6,22,32]. Due to 
the confidential nature of proprietary datasets, testing of the AZ and PFE datasets was 
done by each company independently. Two types of analysis were performed. In the 
first blind prediction analysis, all molecules were predicted with the “as is” version of 
the ALOGPS program [51]. In the second analysis, LIBRARY mode, the 
corresponding in house data sets were added to the training set of ALOGPS to extend 
its applicability domain. LIBRARY mode runs very quickly (it takes about 10 
minutes to calculate 17,000 compounds) and significantly improves the predictive 
power of the models, providing results similar to models using an extended training 
set domain (see e.g. [5,6,32,54]). 
 Figure 3 shows that the accuracy of prediction of compounds increases as R 
increases for both blind prediction and LIBRARY mode analyses. Moreover, the plots 
are very similar for data from both AZ and PFE sets. The maximal MAE is observed 
for molecules with R<0.25 and it is about 0.8 log units, which is in agreement with 
previous results [52]. The power fit, 
 
 MAEpred=0.302*R-0.6,        (5) 
 
where MAEpred is the predicted error, was used as an analytic approximation of the 
observed dependency of accuracy of prediction from the property-based similarity, R. 
Using this formula, the expected and predicted error of the ALOGPS program in both 
blind and LIBRARY prediction modes were in good agreement with the experimental 
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values (Table 1). Equation (5) was also used to estimate the predicted logP errors for 
the iResearch Library of a collection of 13,333,629 unique SMILES, analyzed in a 
previous study [55]. The use of in house data from AZ or PFE decreased the 
estimated MAE error by about 0.06-0.07 log units. While these numbers look small, 
the increase in accuracy could be dramatic for some specific subseries of compounds. 
For example, 514,000 compounds in the iResearch Library that had logP>5 according 
to blind prediction with ALOGPS program changed their values to logP<5 when the 
PFE set was used to refine the program predictions. These compounds would not be 
considered drug-like, according to Lipinski’s Rule-of-5 [56,57], using a version of the 
program developed with the PHYSPROP set only. Moreover, about 495,000 
compounds changed their logP values by more than 1 log unit due to LIBRARY 
correction with the PFE set. Thus, using in-house data could lead to the development 
of a program with higher predictive ability for drug-like compounds than that which is 
obtained using public datasets only. It can also be seen that the two companies both 
explore drug-like, but still different, chemical spaces. A simultaneous use of both sets 
would decrease the MAE by 0.03-0.04 log unit compared to the model developed 
using the data from only one firm. 
 
Conclusions 
 Quantitative estimation of prediction accuracy for new compounds can be a 
very powerful feature in the development of ADMET models and methods for the 
prediction of physico-chemical properties. The results shown in the previous sections 
illustrate that estimation of accuracy in predictions is now possible. The estimated 
accuracy of prediction may guide the user to apply one or another software package 
for the analysis of their data. Another way to assess prediction accuracy is to 
qualitatively estimate the AD of the model and to classify new compounds as within 
or out of the AD. 
 Incorporation of prediction accuracy in the predicted ADMET properties may 
significantly improve the quality of compound selection for HTS subset screening 
[58], HTS hits triage, hit-to-lead stages of drug development and parallel library 
design for in-house and outsourced chemistry. Indeed, the there is a danger that 
interesting and promising series of compounds could be filtered out from planning 
due to improperly predicted logP or aqueous solubility. This danger is particularly 
high for compounds standing far from the investigated chemical space that can be a 
basis for a new intellectual property. The use of confidence values allows one to 
consider them for analysis. 
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Table 1. Estimated and calculated MAE for ALOGPS lipophilicity prediction for 
different datasets1 
 

dataset size Training/LIBRARY set2 estimated calculated 
AZ 7498 PHYSPROP 0.69 0.67 
AZ 7498 AZ + PHYSPROP 0.42 0.42 
PFE 8750 PHYSPROP 0.72 0.74 
PFE 8750 PFE + PHYSPROP 0.37 0.37 

iResearch Library 13333629 PHYSPROP 0.70 - 
iResearch Library 13333629 PHYSPROP + AZ 0.63 - 
iResearch Library 13333629 PHYSPROP + PFE 0.64 - 
iResearch Library 13333629 PHYSPROP + AZ + PFE3 0.60 - 
 
1AZ – AstraZeneca, PFE – Pfizer, PHYSPROP dataset contained 12,908 compounds 
with logP values; 2Datasets used to correct prediction of the global model (see refs 
[5,6,22,51]) and estimate prediction error using eq 5. 3Due to the confidential nature 
of in house datasets the combined AZ+PFE dataset could not be created. In this 
analysis for each molecule we selected the highest correlation coefficient to 
compounds from AZ or PFE datasets. 
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Figure 1. (A) The regression line for in vitro activity –log (EC50) = 0.016 mp + 0.56 logP - 
6.14 calculated using a training set (squares) for the Selwood dataset.[59]. (B) Only 6 test set 
compounds (circles) are within or near to the applicability domain identified as convex hull 
for the training set. (C) Probability density distribution estimated using kde2d{MASS} 
function of R (http://www.r-project.org). The high-density regions covering 60% (very 
reliable) 90% (reliable) or 99% (less reliable) of total density can be defined as applicability 
domain. Only 3, 6 and 8 test set compounds are within these regions, respectively. Three 
outlying compounds from the test set are shown as red circles. The large prediction errors for 
compounds 17 and 18 (but not for compound 24) can be explained by their out-of-the-domain 
position. The reported in vitro activity for compound 24 could be an experimental error. 
Indeed, while this compound was reported to be active in vitro (-log (EC50) = 1.41) it did not 
have any in vivo activity.[59] 
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Figure 2. Five nearest neighbors of biphenyl in the lipophilicity (logP), aqueous 
solubility (logS) and Euclidian (eq 1) spaces. The exactly same set of 75 descriptors 
originally used to develop the logP module of the ALOGPS program[22,51] was used 
by all methods. The neighbors in the logP and logS property-based spaces were 
calculated as a correlation of vectors of model residuals[43,51]. Neighbors in the logP 
space were calculated with an interactive version of the ALOGPS 2.1 [60]. A new 
model was developed to predict water solubility. The nearest neighbors were searched 
amid 12,908 PHYSPROP molecules from refs [22,51]. Only one molecule, 
diphenylmethane, is common in all three spaces. 
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Figure 3. Mean absolute error (MAE, shown as dots) and density of molecules (lines) 
as a function of property-based similarity, R. Red, green and blue colors correspond to 
the AstraZeneca blind, AstraZeneca LIBRARY and Pfizer LIBRARY analyses using 
the ALOGPS program.[22,51] The black line, y=0.302*R-0.6, indicates analytical 
dependency of calculated MAE as a function of property-based similarity. The 
PHYSPROP training set contains very few compounds that are similar to those of the 
AZ set with R>0.5 as shown by the density plot (red line). This explains the high 
variance of MAE results and few outlying points observed for blind prediction of the 
AZ set with R>0.5 (red dots). 
 


